Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 370: 114561, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37802382

RESUMO

Intraventricular hemorrhage (IVH) commonly occurs as an extension of intracerebral hemorrhage (ICH) into the brain ventricular system, leading to worse outcomes without effective management. Using a mouse model of IVH, we found that impaired neurogenesis is evident in the subventricular zone (SVZ), along with persistent microglia activation, leukocyte infiltration and cell death. Pharmacological depletion of microglia using PLX3397, an inhibitor of colony stimulating factor 1 receptor (CSF1R), promotes neurogenesis, and alleviated delayed functional impairments in IVH mice. Meanwhile, an elevated level of microglia-derived CC chemokine ligand 20 (CCL20) is observed in the SVZ following IVH, which can induce the upregulation of pro-inflammatory factors in microglia and impair the proliferation and survival of neural stem cells (NSCs) in vitro. Blocking CCL20 in microglia leads to downregulation of protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/the nuclear factor-κB (NF-κB) signaling pathway, which may contribute to CCL20-dependent pro-inflammatory responses and neural injury. These findings demonstrate a detrimental role of microglia in the neurogenesis and neurorepair after IVH in which CCL20 likely plays a role.


Assuntos
Quimiocinas CC , Microglia , Humanos , Microglia/metabolismo , Quimiocinas CC/metabolismo , Ligantes , Hemorragia Cerebral/metabolismo , Neurogênese/fisiologia , Quimiocina CCL20/metabolismo
2.
CNS Neurosci Ther ; 28(7): 1008-1018, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35352488

RESUMO

INTRODUCTION: Intracerebral hemorrhage (ICH) accounts for 10%-15% of all strokes and culminates in high mortality and disability. After ICH, brain injury is initiated by the mass effect of hematoma, followed by secondary cytotoxic injury from dying brain cells, hematoma disintegration, and cascading brain immune response. However, the molecular mechanism of secondary cytotoxic brain injury in ICH is not completely understood. The sensitive purinergic receptor, P2X4 receptor (P2X4R), was known to recognize extracellular free ATP released by dying cells during tissue injury. AIMS: In this study, we aim to understand the role of P2X4R in acute brain injury triggered by ICH. RESULTS: In this study, we found that the sensitive purinergic receptor, P2X4R, was upregulated in the brain of patients with ICH as well as in a mouse model of ICH induced by collagenase injection. P2X4R blockage with the specific inhibitor 5-BDBD attenuated brain injury in ICH mice by significantly reducing brain edema, blood-brain barrier leakage, neural death, and ultimately acute neurodeficits. Further study indicated that the protective effect of P2X4R inhibition is related to decreased pro-inflammatory activity of microglia and recruitment of peripheral immune cells into the hemorrhagic brain. CONCLUSIONS: These results suggest that the P2X4 receptor is activated by ICH stimuli which worsen brain injury following ICH.


Assuntos
Lesões Encefálicas , Receptores Purinérgicos P2X4 , Animais , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Hematoma/metabolismo , Hematoma/patologia , Humanos , Camundongos , Microglia/metabolismo , Microglia/patologia , Receptores Purinérgicos P2X4/metabolismo
3.
Transl Stroke Res ; 13(2): 311-325, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34523038

RESUMO

Type 2 diabetes mellitus (T2DM) is a major comorbidity exacerbating ischemic brain injury and impairing post-stroke recovery. Our previous study suggested that recombinant human fibroblast growth factor (rFGF) 21 might be a potent therapeutic targeting multiple aspects of pathophysiology in T2DM stroke. This study aims to evaluate the potential effects of rFGF21 on cerebrovascular remodeling after T2DM stroke. Permanent distal middle cerebral artery occlusion was performed in heterozygous non-diabetic db/ + and homozygous diabetic db/db mice. Daily rFGF21 administration was initiated 1 week after stroke induction and maintained for up to 2 weeks thereafter. Multiple markers associated with post-stroke recovery, including angiogenesis, oligodendrogenesis, white matter integrity, and neurogenesis, were assessed up to 3 weeks after stroke. Our results showed an impairment in post-stroke vascular remodeling under T2DM condition, reflected by the decreased expression of trophic factors in brain microvessels and impairments of angiogenesis. The defected cerebrovascular remodeling was accompanied by the decreased oligodendrogenesis and neurogenesis. However, delayed rFGF21 administration normalized post-stroke hyperglycemia and improved neurological outcomes, which may partially be via the promotion of pro-angiogenic trophic factor expression in brain microvessels and cerebrovascular remodeling. The better cerebrovascular remodeling may also contribute to oligodendrogenesis, white matter integrity, and neurogenesis after T2DM stroke. Therefore, delayed rFGF21 administration may improve neurological outcomes in T2DM stroke mice, at least in part by normalizing the metabolic abnormalities and promoting cerebrovascular remodeling and white matter repair.


Assuntos
Isquemia Encefálica , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Acidente Vascular Cerebral , Substância Branca , Animais , Isquemia Encefálica/complicações , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Camundongos , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/complicações
4.
Front Immunol ; 12: 660230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745082

RESUMO

Background: Interleukin-6 receptor blockade is effective in reducing the risk of relapses in neuromyelitis optica spectrum disorder (NMOSD). However, its efficacy during acute attacks of NMOSD remains elusive. Objective: We investigated the effects of tocilizumab on disability during acute attacks, as well as its maintenance, in patients with moderate-to-severe myelitis. Methods: Nineteen patients with NMOSD received tocilizumab treatment as add-on to high-dose methylprednisolone (HDMP) in acute myelitis and twenty-two patients who only received HDMP were compared. Disease disability was assessed using a multi-level scaling system that included the expanded disability status scale (EDSS), Hauser ambulation index (HAI), modified Rankin scale (mRS), pain numerical rating scale (NRS), functional assessment of chronic illness therapy-fatigue scale (FACIT-F), activity of daily living (ADL), EuroQol five-dimensions-three-level questionnaire (EQ-5D-3L), and sensory function score and bowel and bladder function score in Kurtzke functional systems scores (FSS). Results: Improved EDSS, HAI, and mRS, as well as increased ADL and EQ-5D-3L were significant in patients on tocilizumab compared with those on steroids as monotherapy at 3 months (p < 0.05). Both groups of patients showed improved pain, fatigue, sensory function, and autonomic function at follow-ups, compared with baseline respectively. The changes in NRS, FACIT-F, and sensory and autonomic FSS showed no significant differences between the two groups. Tocilizumab significantly lowered the risk of relapses (HR = 0.21, 95% CI 0.06-0.76, p = 0.017) and reduced the annualized relapse rate compared with those by steroids (0.1 ± 0.2 vs 0.5 ± 0.6, p = 0.013). Conclusion: Early initiation of tocilizumab provided a safe and effective add-on alternative during attacks, and its maintenance contributed to a significant reduction of relapse rate in NMOSD.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Mielite/tratamento farmacológico , Neuromielite Óptica/tratamento farmacológico , Atividades Cotidianas , Adulto , Idoso , Feminino , Humanos , Masculino , Metilprednisolona/uso terapêutico , Pessoa de Meia-Idade , Mielite/fisiopatologia , Mielite/psicologia , Neuromielite Óptica/fisiopatologia , Neuromielite Óptica/psicologia , Qualidade de Vida , Recidiva
5.
J Neuroinflammation ; 18(1): 173, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372870

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a significant cause of death and disability worldwide. The TLR4-NFκB signaling cascade is the critical pro-inflammatory activation pathway of leukocytes after TBI, and modulating this signaling cascade may be an effective therapeutic target for treating TBI. Previous studies indicate that recombinant annexin A2 (rA2) might be an interactive molecule modulating the TLR4-NFκB signaling; however, the role of rA2 in regulating this signaling pathway in leukocytes after TBI and its subsequent effects have not been investigated. METHODS: C57BL/6 mice were subjected to TBI and randomly divided into groups that received intraperitoneal rA2 or vehicle at 2 h after TBI. The peripheral leukocyte activation and infiltrating immune cells were examined by flow cytometry, RT-qPCR, and immunostaining. The neutrophilic TLR4 expression on the cell membrane was examined by flow cytometry and confocal microscope, and the interaction of annexin A2 with TLR4 was assessed by co-immunoprecipitation coupled with Western blotting. Neuroinflammation was measured via cytokine proteome profiler array and RT-qPCR. Neurodegeneration was determined by Western blotting and immunostaining. Neurobehavioral assessments were used to monitor motor and cognitive function. Brain tissue loss was assessed via MAP2 staining. RESULTS: rA2 administration given at 2 h after TBI significantly attenuates neutrophil activation and brain infiltration at 24 h of TBI. In vivo and in vitro data show that rA2 binds to and reduces TLR4 expression on the neutrophil surface and suppresses TLR4/NFκB signaling pathway in neutrophils at 12 h after TBI. Furthermore, rA2 administration also reduces pro-inflammation of brain tissues within 24 h and neurodegeneration at 48 h after TBI. Lastly, rA2 improves long-term sensorimotor ability and cognitive function, and reduces brain tissue loss at 28 days after TBI. CONCLUSIONS: Systematic rA2 administration at 2 h after TBI significantly inhibits activation and brain infiltration of peripheral leukocytes, especially neutrophils at the acute phase. Consequently, rA2 reduces the detrimental brain pro-inflammation-associated neurodegeneration and ultimately ameliorates neurological deficits after TBI. The underlying molecular mechanism might be at least in part attributed to rA2 bindings to pro-inflammatory receptor TLR4 in peripheral leukocytes, thereby blocking NFκB signaling activation pathways following TBI.


Assuntos
Anexina A2/administração & dosagem , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Citocinas/metabolismo , Leucócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo
6.
Sci Transl Med ; 13(605)2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349037

RESUMO

Acute brain insults elicit pronounced inflammation that amplifies brain damage in intracerebral hemorrhage (ICH). We profiled perihematomal tissue from patients with ICH, generating a molecular landscape of the injured brain, and identified formyl peptide receptor 1 (FPR1) as the most abundantly increased damage-associated molecular pattern (DAMP) receptor, predominantly expressed by microglia. Circulating mitochondrial N-formyl peptides, endogenous ligands of FPR1, were augmented and correlated with the magnitude of brain edema in patients with ICH. Interactions of formyl peptides with FPR1 activated microglia, boosted neutrophil recruitment, and aggravated neurological deficits in two mouse models of ICH. We created an FPR1 antagonist T-0080 that can penetrate the brain and bind both human and murine FPR1. T-0080 attenuated brain edema and improved neurological outcomes in ICH models. Thus, FPR1 orchestrates brain inflammation after ICH and could be targeted to improve clinical outcome in patients.


Assuntos
Lesões Encefálicas , Receptores de Formil Peptídeo , Animais , Hemorragia Cerebral , Humanos , Inflamação , Camundongos , Infiltração de Neutrófilos , Transdução de Sinais
7.
Transl Stroke Res ; 12(3): 416-427, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33140258

RESUMO

Intravenous administration of tissue-type plasminogen activator (IV tPA) therapy has long been considered a mainstay in ischemic stroke management. However, patients respond to IV tPA therapy unequally with some subsets of patients having worsened outcomes after treatment. In particular, diabetes mellitus (DM) is recognized as a clinically important vascular comorbidity that leads to lower recanalization rates and increased risks of hemorrhagic transformation (HT). In this short-review, we summarize the recent advances in understanding of the underlying mechanisms involved in post-IV tPA worsening of outcome in diabetic stroke. Potential pathologic factors that are related to the suboptimal tPA recanalization in diabetic stroke include higher plasma plasminogen activator inhibitor (PAI)-1 level, diabetic atherogenic vascular damage, glycation of the tPA receptor annexin A2, and alterations in fibrin clot density. While factors contributing to the exacerbation of HT in diabetic stroke include hyperglycemia, vascular oxidative stress, and inflammation, tPA neurovascular toxicity and imbalance in extracellular proteolysis are discussed. Besides, impaired collaterals in DM also compromise the efficacy of IV tPA therapy. Additionally, several tPA combination approaches developed from experimental studies that may help to optimize IV tPA therapy are also briefly summarized. In summary, more research efforts are needed to improve the safety and efficacy of IV tPA therapy in ischemic stroke patients with DM/poststroke hyperglycemia.


Assuntos
Diabetes Mellitus , Hiperglicemia , Acidente Vascular Cerebral , Fibrinolíticos/uso terapêutico , Humanos , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Terapia Trombolítica , Ativador de Plasminogênio Tecidual/uso terapêutico , Resultado do Tratamento
8.
J Clin Med ; 10(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396652

RESUMO

Cerebral metabolic dysfunction has been shown to extensively mediate the pathophysiology of brain injury after subarachnoid hemorrhage (SAH). The characterization of the alterations of metabolites in the brain can help elucidate pathophysiological changes occurring throughout SAH and the relationship between secondary brain injury and cerebral energy dysfunction after SAH. Cerebral microdialysis (CMD) is a tool that can measure concentrations of multiple bioenergetics metabolites in brain interstitial fluid. This review aims to provide an update on the implication of CMD on the measurement of metabolic dysfunction in the brain after SAH. A literature review was conducted through a general PubMed search with the terms "Subarachnoid Hemorrhage AND Microdialysis" as well as a more targeted search using MeSh with the search terms "Subarachnoid hemorrhage AND Microdialysis AND Metabolism." Both experimental and clinical papers were reviewed. CMD is a suitable tool that has been used for monitoring cerebral metabolic changes in various types of brain injury. Clinically, CMD data have shown the dramatic changes in cerebral metabolism after SAH, including glucose depletion, enhanced glycolysis, and suppressed oxidative phosphorylation. Experimental studies using CMD have demonstrated a similar pattern of cerebral metabolic dysfunction after SAH. The combination of CMD and other monitoring tools has also shown value in further dissecting and distinguishing alterations in different metabolic pathways after brain injury. Despite the lack of a standard procedure as well as the presence of limitations regarding CMD application and data interpretation for both clinical and experimental studies, emerging investigations have suggested that CMD is an effective way to monitor the changes of cerebral metabolic dysfunction after SAH in real-time, and alternatively, the combination of CMD and other monitoring tools might be able to further understand the relationship between cerebral metabolic dysfunction and brain injury after SAH, determine the severity of brain injury and predict the pathological progression and outcomes after SAH. More translational preclinical investigations and clinical validation may help to optimize CMD as a powerful tool in critical care and personalized medicine for patients with SAH.

9.
Front Immunol ; 9: 523, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29616032

RESUMO

Astrocyte loss induced by neuromyelitis optica (NMO)-IgG and complement-dependent cytotoxicity (CDC) is the hallmark of NMO pathology. The survival of astrocytes is thought to reflect astrocyte exposure to environmental factors in the CNS and the response of astrocytes to these factors. However, still unclear are how astrocytes respond to NMO-IgG and CDC, and what CNS environmental factors may impact the survival of astrocytes. In a murine model of NMO induced by intracerebral injection of NMO-IgG and human complement, we found dramatic upregulation of IL-15 in astrocytes. To study the role of astrocytic IL-15 in NMO, we generated a transgenic mouse line with targeted expression of IL-15 in astrocytes (IL-15tg), in which the expression of IL-15 is controlled by a glial fibrillary acidic protein promoter. We showed that astrocyte-targeted expression of IL-15 attenuates astrocyte injury and the loss of aquaporin-4 in the brain. Reduced blood-brain barrier leakage and immune cell infiltration are also found in the lesion of IL-15tg mice subjected to NMO induction. IL-15tg astrocytes are less susceptible to NMO-IgG-mediated CDC than their wild-type counterparts. The enhanced resistance of IL-15tg astrocytes to cytotoxicity and cell death involves NF-κB signaling pathway. Our findings suggest that IL-15 reduces astrocyte loss and NMO pathology.


Assuntos
Astrócitos/fisiologia , Barreira Hematoencefálica/fisiologia , Encéfalo/metabolismo , Interleucina-15/metabolismo , Neuromielite Óptica/imunologia , Animais , Aquaporina 4/metabolismo , Encéfalo/patologia , Morte Celular , Células Cultivadas , Proteínas do Sistema Complemento/metabolismo , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/genética , Humanos , Imunoglobulinas/metabolismo , Interleucina-15/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...